loading...
علوم بلاگ|گروه درسی علوم تجربی شهرستان کوهبنان
تبلیغات

محمدعلی هادیزاده بازدید : 282 چهارشنبه 15 مرداد 1393 نظرات (1)

.

 در یک ظرف مقدار معینی محلول شکر اشباع تهیه کنید . حدود 1/2شکر مصرف شده (نصف مقدار استفاده شده) نیترات پتاسیم محلول را به آن اضافه کنید و با شعله ملایم حرارت دهید تا آب ان بخار شده و به حالت خمیری در آید ، حرارت را قطع کنید زیرا ممکن است مشتعل شود.سپس خمیر مورد نظر را در قالب های دلخواه یا لوله مانند درون کاغذ بریزید و بگذارید تا در معرض هوا سرد شود ، ماده اماده شده با شعله کبریت روشن شده و دود فراوانی را تولید می کند

 

محمدعلی هادیزاده بازدید : 181 سه شنبه 07 مرداد 1393 نظرات (0)

۱- شما نیاز به یک بطری پلاستیکی دو لیتری دهان گشاد دارید.

۲- قسمت بیش تر بطری را با آب گرم پر کنید و سپس مقداری مایع ظرفشویی اضافه کنید.

۳- بقیه ی موادی که شما نیاز دارید سرکه و جوش شیرین و رنگ خوراکی است.(اگر شما حباب های رنگی می خواهید باید رنگ خوراکی را اضافه کنید.)

توجه: در صورت اضافه کردن رنگ خوراکی لباس ها و سطوح دیگر لکه می شوند، پس مواظب باشید.

۴٫ به بطری تان دو قاشق سوپ خوری جوش شیرین اضافه کنید. دست تان روی قسمت باز بطری قرار دهید و آن را خوب تکان دهید تا آبتان حسابی کف آلود شود. حالا یک قطره رنگ خوراکی به کفتان اضافه کنید.

۵٫ در این مرحله باید سرکه را اضافه کنید. حالا واکنش شروع می شود. توجه کنید که هرگز سرپوش بطری را رویش قرار ندهید چون خطرناک است و باعث انفجار می شود.

محمدعلی هادیزاده بازدید : 182 پنجشنبه 19 تیر 1393 نظرات (0)


اراتوستن: اندازه گیری محیط زمین در ظهر انقلاب تابستانی در یکی از شهرهای مصر ،که امروزه اسوان نامیده می شود، خورشیدمستقیم می تابد: اجسام هیچ سایه ای ندارند و نور خورشید تا انتهای یک چاه عمیق نفوذ می کند. اراتوستن که کتابدار کتابخانه ی اسکندریه در قرن سوم پیش از میلاد بود، هنگامی که این مطلب را خواند، دریافت که اطلاعات لازم برای محاسبه ی محیط زمین را در اختیار دارد. وی همان روز و همان ساعتی که در بالا گفته شد، آزمایشی ترتیب داد و مشاهده کرد که پرتوهای خورشید در اسکندریه تا حدودی مایل بوده و حدود هفت درجه از خط عمود انحراف دارد. حالا دیگر فقط محاسبه های هندسی باقی مانده بود. فرض کنید زمین گرد است، در این صورت محیط دایره آن ۳۶۰ درجه است. با این تفسیر اگر دو شهراز یکدیگر۷ درجه دور باشند، می توان گفت به اندازه هفت سیصد و شصتم یا یک پنجاهم یک دایره کامل از هم فاصله دارند .با اندازه گیری فاصله دو شهر ، مشخص شد که این دو ۵ هزار استادیوم (واحد طول برابر با حدود۱۸۵ متر) از یکدیگر دورند. اراتوستن نتیجه گرفت که محیط زمین ۵۰ برابر این فاصله یعنی ۲۵۰ هزار استا دیوم است. از آن جا که دانشمندان در مورد طول واقعی یک استادیوم یونانی اختلاف نظر دارند، غیر ممکن است بتوانیم دقت این اندازه گیری را تعیین کنیم. اما طبق بعضی از محاسبه ها گفته می شود خطای این اندازه گیری حدود ۵ درصد است .

گالیله : آزمایش چیزهای در حال سقوط تا حدود سال های ۱۵۰۰ میلادی، مردم فکر می کردند چیزهای سنگین سریع تر از اجسام سبک سقوط می کنند. هر چه باشد، این سخن ارسطو است. این که یک دانشمند یونان باستان توانسته بود، همچنان سلطه خود را حفظ کند، بیانگر این است که علم طی قرون وسطی چقدر تنزل کرده بود. گالیلئوگالیله که استاد کرسی ریاضیات در دانشگاه پیزا بود ، آن قدر جسارت داشت که دانش پذیرفته شده را با چالش روبه رو کند. این داستان از جمله ماجراهای معروف تاریخ علم است:گفته می شود وی دو چیز با وزن های مختلف را از بالای برج کج شهر رها کرد و نشان داد که آن چیزها در یک زمان به زمین می رسند. به چالش طلبیدن باورهای ارسطو ممکن بود برای گالیله به قیمت از دست دادن شغلش تمام شود، اما وی با این کار نشان داد که داور نهایی در موضوع های علمی، رویدادهای طبیعی است نه اعتبارافراد.

گالیله:آزمایش سقوط توپ ها از سطح شیبدار گالیله به بازپیرایی باورهای خود درمورد چیزهای در حال حرکت ادامه داد. وی یک تخته که حدود ۶ متر طول و ۲۵ سانتی متر عرض داشت را انتخاب کرد و شیاری را در مرکز آن طوری حفر کرد که تا جایی که امکان دارد، صاف و مستقیم باشد. وی سطح را شیبدار کرد وتوپ های برنجی را درون این شیارها غلتاند وزمان سقوط را با یک ساعت آبی اندازه گیری کرد. ساعت آبی یک مخزن بزرگ آب بود که آبش از لوله های نازک به یک ظرف منتقل می شد. وی پس از هر بار آزمایش ورها کردن توپ میزان آب تخلیه شده را وزن می کرد. گالیله با وزن کردن مقدار آب تخلیه شده، زمان را اندازه گرفت و آن را با مسافتی که گلوله طی کرده بود، مقایسه می کرد. ارسطو پیش بینی کرده بود که سرعت گلوله های غلتان ثابت است: اگرمدت زمان حرکت را دو برابر کنید، مسافت طی شده دو برابر می شود. اما گالیله نشان داد که مسافت طی شده با مجذور زمان متناسب است: اگر مدت زمان حرکت را دو برابر کنید، مسافت طی شده چهار برابر می شود. علت آن نیز این است که توپ در اثر جاذبه گرانشی مرتبا شتاب می گیرد.

نیوتون : تجزیه ی نور خورشید با منشور اسحاق نیوتن در همان سالی که گالیله در گذشت، متولد شد. وی در سال ۱۶۶۵ میلادی از ترینیتی کالج کمبریج فارغ التحصیل شد. سپس، دو سال خانه نشین شد تا بیماری طاعون را که همه گیر شده بود، از سر بگذراند. وی از این که خانه نشین بود، چندان ناراضی نبود؛ چرا که مشغول فعالیت های علمی بود. در آن سال ها این تفکر رایج بود که نور سفید خالص ترین نوع نور است ( باز هم باورهای ارسطو) و بنابراین نورهای رنگی، تغییر شکل یافته ی نورهای سفید هستند. نیوتن برای آزمایش این نظریه، دسته ای از پرتو های خورشید را به منشور تاباند و نشان داد که خورشید به طیفی از رنگ ها تجزیه می شود. البته مردم ، رنگین کمان را در آسمان مشاهده می کردند اما از تفسیر صحیح آن ناتوان بودند. نیوتن توانست به درستی نتیجه گیری کند که رنگ های قرمز، نارنجی ،قهوه ای ،سبز، آبی، نیلی، بنفش و رنگ های بین این ها، تشکیل دهنده نور سفید هستند. نور سفید در نگاه اول بسیار ساده به نظر می رسید، اما پس از نگاه دقیق تر مشخص شد که نور سفید تلفیقی زیبا از نور های گوناگون است.

کاوندیش :آزمایش ترازوی پیچشی یکی دیگر از فعالیت های نیوتن پیشنهاد نظریه ی گرانشی بود که بیان می کرد قدرت جاذبه بین دو جسم با مجذور جرم هایش افزایش و به نسبت مجذور فاصله ی بین آن دو کاهش می یابد. اما این پرسش باقی بود که قدرت این جاذبه ی گرانشی چقدر است؟ در پایان دهه ی اول قرن هجدهم، هنری کاوندیش تصمیم گرفت به این پرسش پاسخ دهد. وی یک میله ی چوبی را که حدود دو متر طول داشت، انتخاب کرد و سپس یک گلوله ی کوچک فلزی به هر طرف این میله ی چوبی وصل کرد تا شبیه یک دمبل شود. سپس آن را با سیمی آویزان کرد. پس از آن دو گلوله سربی را که حدود ۱۶۰ کیلوگرم جرم داشتند، به توپ های کوچک دو سر میله ی چوبی نزدیک کرد تا نیروی گرانشی لازم برای جذب کردن آن ها ایجاد شود. گلوله ها حرکت کردند و در نتیجه سیم تاب برداشت. کاوندیش با وصل کردن یک قلم کوچک در دو طرف میله توانست میزان جابجایی ناچیز گلوله ها را اندازه بگیرد. وی برای محافظت دستگاه، از جریان هوا، آن را ، که ترازوی پیچشی نامیده می شود ، درون اتاقکی قرار داد و با یک تلسکوپ میزان جابجایی را خواند. وی با این دستگاه توانست مقداری را که به ثابت گرانشی معروف است، با دقت بسیار زیادی اندازه گیری کند و با استفاده از ثابت گرانشی، چگالی و جرم زمین را به دست آورد. اراستوتن توانست محیط زمین را اندازه بگیرد اما کاوندیش جرم زمین را به دست آورد.

یانگ: آزمایش تداخل نور باورهای نیوتن همیشه صحیح نبود. پس از استدلال مختلف به این نتیجه رسید که نور تنها از ذره هایی تشکیل شده است و نه از موج. در سال ۱۸۰۳ توماس یانگ پزشک و فیزیک دان انگلیسی تصمیم گرفت این نظریه را بیازماید. وی سوراخی را در پرده ی پنجره ایجاد کرد و آن را با یک مقوا که به وسیله سوزن شکاف کوچکی در آن ایجاد کرده بود، پوشاند. سپس، نوری را که از این شکاف عبور می کرد با استفاده از یک آینه منحرف کرد. در مرحله ی بعد، ورقه ی نازکی از کاغذ انتخاب کرد که فقط یک سی ام اینچ (حدود یک میلی متر) ضخامت داشت و آن را به طور دقیق در مسیر عبور نور قرار داد تا پرتو نور را به دو قسمت تقسیم کند. نتیجه ی این آزمایش طرحی از نوارهای متناوب روشن و تاریک بود: این پدیده را فقط با فرض این که پرتوهای نور همانند موج رفتار می کنند، می توان تفسیر کرد. نوارهای روشن وقتی مشاهده می شوند که دو قله موج با یک دیگر هم پوشانی و یکدیگر را تقویت کنند، اما نوارهای سیاه وقتی ایجاد می شوند که یک قله موج با موج مخالف آن ترکیب شود و یک دیگر را خنثی کنند. این آزمایش سال های بعد با استفاده از یک مقوا که در آن دو شکاف برای تقسیم نور به دو پرتو ایجاد شده بود، تکرار شد و به همین دلیل به آزمایش شکاف دوگانه نیر مشهور است. این آزمایش بعدها به معیاری برای تعیین حرکت شبه موجی تبدیل شد: حقیقتی که یک قرن بعد، هنگامی که نظریه ی کوانتوم آغاز شد اهمیت بیش از اندازه ای یافت.

فوکو: چرخش کره زمین فوکو در سال ۱۸۵۱ در پاریس آزمایش بسیار مشهوری را به انجام رساند که پس از گذشت سالیان متمادی، سال گذشته در قطب جنوب دوباره تکرارشد. این دانشمندان آونگی را در قطب جنوب نصب کردند و به تماشای حرکت این آونگ پرداختند. جین برنارد فوکو دانشمند فرانسوی یک گلوله آهنی ۳۰ کیلوگرمی را به انتهای یک مفتول متصل و از سقف کلیسایی آویزان کرد و آن را به حرکت درآورد تا به سمت عقب وجلو حرکت کند. سپس برای آن که نحوه ی حرکت این آونگ به خوبی مشخص شود، قلمی را به انتهای گلوله ای که روی بستری از شن های نرم و مرطوب در حال نوسان بود، قرار داد. تماشاچیان در کمال شگفتی مشاهده کردندکه آونگ به طرز غیر قابل توجیهی در حال چرخش است یعنی مسیر حرکت رفت و برگشتی آن در هر تناوب با تناوب قبلی متفاوت است. اما واقعیت امر این است که این کف کلیسا بود که به آرامی حرکت می کرد و به این ترتیب فوکو توانست با قانع کننده ترین روش ممکن نشان دهد که زمین حول محور خود در حال گردش است. در عرض جغرافیایی پاریس، آونگ طی هر ۳۰ ساعت یک چرخش کامل را در جهت عقربه های ساعت انجام می دهد؛ در نیمکره جنوبی همین آونگ خلاف جهت عقربه های ساعت به حرکت درمی آید و در نهایت روی خط استوا حرکت در اصل چرخشی نبود. همان طور که دانشمندان عصر جدید نشان دادند زمان تناوب حرکت چرخشی پاندول در قطب جنوب برابر ۲۴ ساعت است.

میلیکان: آزمایش قطره ی روغن از دوران باستان دانشمندان الکتریسیته را مورد بررسی قرار داده بودند؛ پدیده پیچیده ای که هنگام رعد و برق از آسمان نازل می شد، یا با کشیدن شانه به موها می توانستند به راحتی آن را ایجاد کنند. در سال ۱۸۹۷ فیزیک دان انگلیسی جی.جی.تامسون اثبات کرد که الکتریسیته از ذره هایی که دارای بار منفی هستند، یعنی الکترون ها، به وجود می آید. ( آزمایشی که در واقع بایستی یکی از موردهای این فهرست باشد) و کار اندازه گیری بار این ذره ها در سال ۱۹۰۹ به رابرت میلیکان، دانشمند آمریکایی، محول شد. وی با استفاده از یک عطرپاش، قطره های ریز روغن را به درون اتاق کوچک شفافی اسپری کرد. در بالا و پایین این اتاق کوچک صفحه های فلزی قرار داشتند که به باتری متصل بودند و در نتیجه یکی از صفحه ها مثبت و صفحه دیگر منفی بود. از آن جا که این قطره ها هنگام عبور در هوا دارای مقدار جزیی بار الکتریکی می شد، می توان سرعت سقوط این قطره ها را با تغییر ولتاژ صفحه های فلزی تنظیم کرد. هنگامی که نیروی الکتریکی به طور دقیق با نیروی گرانشی برابر شود، قطره های روغن همانند ستارگان درخشان در پس زمینه تاریک به نظر می رسند و در هوا معلق می مانند. میلیکان این قطره ها را یکی پس از دیگری مورد ملاحظه قرار داد، ولتاژ صفحه را تغییر داد و به مشاهده ی تأثیر آن پرداخت. وی پس از انجام آزمایش های متعدد به این نتیجه رسید که بار الکتریکی یک مقدار مشخص و ثابت دارد. کوچک ترین بار این قطره ها چیزی نیست به جز بار یک الکترون منفرد.

رادرفورد: کشف هسته در سال ۱۹۱۱ که ارنست رادرفورد در دانشگاه منچستر سرگرم آزمایش در مورد رادیواکتیویته بود، گمان می رفت که اتم ها از گلوله های نرم و باردار مثبتی تشکیل شده اند که توسط ذره هایی با بار منفی احاطه می شوند؛ مدل کیک کشمشی. اما هنگامی که وی و دستیارانش ذره های باردار مثبت کوچکی را که ذره ی آلفا نامیده می شدند، به صفحه نازکی از طلا تاباندند، در شگفتی تمام مشاهده کردند که درصد اندکی از این پرتوها به سمت عقب برگشتند. به عبارت دیگر این ذره ها پس از برخورد با اتم ها کمانه کرده اند. رادرفورد نتیجه گرفت اتم های واقعی چندان هم نرم نیستند. قسمت اصلی جرم این اتم ها باید در مرکز اتم ها، که امروزه هسته اتم می نامیم، قرارداشته باشد و الکترون ها این هسته ها را احاطه کرده اند. با وجود تغییرهایی که نظریه ی کوانتوم در آن ایجاد کرد، این تصویر از اتم ها هنوز هم به قوت خود باقی است.

کلاوس جانسون: تداخل یک الکترون منفرد نه گفته های نیوتن و نه یانگ هیچ کدام در مورد ماهیت نور به طور کامل صحیح نبود. هر چند که به سادگی نمی توان گفت نور از ذره تشکیل شده است. خاصیت های آن را فقط با استفاده از ماهیت موجی نیز نمی توان به طور کامل تشریح کرد. طی ۵ سال اول قرن بیستم ماکس پلانک و آلبرت اینشتین نشان دادند که نور در بسته هایی که فوتون نام دارد، جذب و نشر می شود. اما آزمایش هایی برای تعیین ماهیت دقیق نور هم چنان ادامه داشت. بعدها تئوری کوانتوم متولد شد و طی چند دهه توسعه یافت و توانست دو نظریه ی پیشین را با یک دیگر آشتی داده و نشان دهد که هر دو می توانند صحیح باشند: فوتون ها و سایر ذره های زیراتمی (همانند الکترون ها، پروتون هاو ) دو چهره از خود بروز می دهند که مکمل یکدیگرند؛ بنابراین به گفته یک فیزیک دان در دسته Wavices قرار می گیرند.

فیزیک دانان برای شرح دادن این مطلب اغلب از یک آزمایش نظری شناخته شده استفاده می کنند . آن ها ابزارهای آزمایش شکاف دوگانه یانگ را به کار می برند، اما به جای آن که نور معمولی به کار ببرند از پرتو الکترون استفاده می کنند. براساس قانون های مکانیک کوانتوم، جریان ذره ها به دو پرتو تفکیک می شوند، پرتوهای کوچک تر با یکدیگر تداخل می کنند و همان الگوی آشنای نوارهای متناوب تاریک و روشن را که توسط نور ایجاد شده بود، از خود نشان می دهند. یعنی ذره ها همانند موج عمل می کنند. براساس مقاله ای که در فیزیکس ورد منتشر شد و توسط پیتر راجرز سردبیر مجله نگاشته شده است تا سال ۱۹۶۱ هیچ کس این آزمایش را در عمل به انجام نرساند تا این که کلاوس جانسون در این سال موفق به انجام این آزمایش شد . در آن هنگام هیچ کس از نتایج به دست آمده چندان شگفت زده نشد و نتیجه های به دست آمده همانند بسیاری از موردهای دیگر بدون آن که نامی از کسی در میان باشد به دنیای علم وارد شد.

محمدعلی هادیزاده بازدید : 344 پنجشنبه 19 تیر 1393 نظرات (0)

آب گرم زودتر یخ میزند یا آب سرد؟

مسلما انتطار داریم آب سرد زودتر از آب داغ دچار انجماد شود ولی تجربه وتحقیق نشان داده عکس این واقیت صحیح است و آب داغ زودتراز آب سرد منجمد میشود.
قابل توجیه به نظر نمی رسد که آب 70درجه سانتی گراد سریع تر از آب 20درجه دچار انجماد شود به طور مثال اگر آب 20 درجه به 30 دقیقه وقت نیاز داشته باشدتا به دمای انجماد برسد ، آب 70 درجه مدت زمان بیشتری نیاز دارد چون در ابتدا باید زمانی را صرف کند تا از 70 درجه به 20درجه برسد و سپس همان 30 دقیقه را پشت سر بگذارد تا منجمد شود ولی واقعیت این است که وقتی آب از 70 درجه به20 درجه میرسد دچار تغییراتی می شود که پیامد این تغییرات می تواند منجر به این شود که زمان انجماد آن کوتاهتر شود. این پدیده، اثر امپمبا Mpemba effect نام دارد.
چنین پدیده‌ای، متناقض است، طی آزمایشات زیادی چنین چیزی مشاهده و ثبت شده است. در واقع قرن‌هاست که دانشمندان متوجه این پدیده شده‌اند و دانشمندانی مثل ارسطو، بیکن و دکارت، سال‌ها و قرن‌ها پیش آن را توصیف کرده‌اند.

چرا به این پدیده یعنی زودتر منجمد شدن آب داغ پدیده امپمبا می گویند ؟
ولی تا سال ۱۹۶۹، یعنی زمانی که یک دانش‌آموز دبیرستانی تانزانیایی، به صورت تصادفی متوجه آن شد، این پدیده توسط دانش مدرن امروزی‌مان مورد بررسی قرار نگرفته بود
به پدیده زودتر یخ زدن آب گرم نسبت به آب سرد، البته تحت شرایطی خاص اثر امپمبا Mpemba effect گفته می‌شود.
نخستین بار ارسطو ۳۰۰ سال قبل از میلاد مسیح متوجه این پدیده شد. دانشمندان قرون وسطی، زمانی که می‌خواستند تئوری گرما را تبیین کنند، متوجه این پدیده شدند. در سال ۱۴۶۱، فیزیکدانی به نام جیووانی مارلیانی، ۴ اونس آب حرات‌دیده و آب معمولی را برای یخ زدن در بیرون قرار داد و در کمال تعجب مشاهده کرد که آب گرم‌تر، زودتر یخ بسته است، اما نتوانست توجیهی برای این مشاهده خود پیدا کند.
اما زمانی که تئوری مدرن گرما، توسط دانشمندان مختلف تبیین شد، پیده امپمبا به کلی فراموش شد، اما ۵۰۰ سال بعد از آزمایش مارلیانی و بیشتر از ۲ هزاره بعد از ارسطو، این پدیده بار دیگر به صورت اتفاقی مشاهده شد.
این بار یک دانش‌آموز دبیرستانی تانزانیایی متوجه قضیه شد، داستان مشاهده او در مجله علمی نیوساینتیست به چاپ رسید

در سال ۱۹۶۳، این دانش‌آموز که امپمبا نام داشت، به همراه دانش‌آموزهای دیگر برای مراسمی تدارک دیده بودند و می‌خواستند بستنی درست کنند. برای درست کردن بستنی همانطور که می دانید شیر جوشیده شده‌ای که به آن شکر اضافه شده،باید یخ بزند. امپمبا هم منتظر بود که ظرف شیر و شکرش سرد شود تا بتواند آن را داخل یخچال بگذارد. اما او عجله داشت و از طرفی می‌دید که اگر زود نجنبد، دانش‌آموزهای دیگر زودتر از او ظرف هایشان را در یخچال می‌گذارند و جایی برای ظرف او باقی نمی‌ماند، به همین علت ظرف سرد نشده‌اش را در یخچال گذاشت. اما او در کمال تعجب مشاهده کرد، که زودتر از دانش‌آموزهای دیگر که ظرف شیر و شکر سرد را در یخچال گذاشته بودند، موفق به تهیه بستنی شده است.
دبیر فیزیک او هم در کلاس بود، امپمبا که تعجب کرده بود، در این مورد از دبیرش پرسید، اما دبیر فیزیک او گفت که او ممکن است اشتباهی کرده باشد.
امپمبا اول کنجکاوی بیشتر نکرد و با همین توضیح قانع شد، اما مدتی بعد از یکی از دوستانش که در شهر تانگا بستنی‌فروشی می‌کرد، شنید که او برای اینکه زودتر موفق به تهیه بستنی شود، ظرف سردنشده را مستقیما داخل یخچال می‌گذارد. به علاوه امپمبا متوجه شد که همه بستنی‌فروشهای تانگا، همین کار دوستش را می‌کنند.
مدتی بعد در دبیرستان، امپمبا سؤالش را مطرح کرد، اما معلمش حاضر به قبول آن نشد و به شوخی گفت که این چینن چیزی را فقط فیزیک امپمیا می‌گوید و نمی‌توان نشانی از آن در دانش فیزیک جهانی پیدا کرد. اما امپمبا مجددا در آزمایشگاه زیست‌شناسی، این پدیده را با استفاده از ظرف آب گرم و سرد تکرار کرد و دوباره به همان نتیجه سابق رسید.

مدتی بعد یک استاد فیزیک به نام دکتر آزبورن از دبیرستان امپمبا بازید کرد، امپمبا از فرصت استفاده کرد و از دکتر آزبورن هم در مورد این پدیده پرسید. آزبورن توجهی نداشت ولی به امپمبا قول داد، این مورد را بررسی کند. آزبورن از یک تکنسین آزمایشگاه خواست که این پدیده را امتحان کند، او هم به همان نتیجه امپمبا رسید. سرانجام در سال ۱۹۶۹، مشاهدات امپمیا و دکتر ازبورن به چاپ رسید و پدیده زودتر یخ زدن آب گرم، به اثر امپمبا، موسوم شد.
شرایطی که تحت آن پدیده امپمبا را می‌توان مشاهده کرد، بسیار خاص هستند، شکل یخچال یا منبع سردکننده، شکل ظرف، ناخالصی و میزان گاز موجود در آب، همه در رخ دادن اثر امپمبا مؤثر هستند
به عبارت بهتر دلیل واحدی برای پدیده ممبا وجود ندارد و عوامل مختلفی در ایجاد این پدیده موثر هستند این دلایل عبارتند از
۱- تبخیر: فرض کنید، دو ظرف حای آب ۷۰ درجه و آب ۳۰ درجه داریم و آنها را سرد می‌کنیم. هنگامی که آب گرم‌تر سرد می‌شود، مقداری از حجم آن تبخیر می‌شود، این مقدار حجم تبخیر شده آب از ۲ راه باعث تسهیل یخ زدن آب گرم‌تر می‌شود:
الف مقدار جرم آب گرم‌تر را کم می‌کند.
ب- برای تبخیر نیاز به مقداری گرما است، آب تبخیر شده این گرما را از آب مایع می‌گیرد.
البته بدیهی است که تبخیر، به تنهایی نمی تواند اثر امپمبا را توجیه کند.
۲- گازهای حل شده در آب: هر چقدر آب گرم‌تر باشد، میزان گاز حل شده کمتری در خود دارد، بنابراین جریان‌های همرفتی در آن تسهیل می‌شود و آب به صورت یکنواخت‌تری خنک می‌شود. به علاوه آبی که گاز کمتری دارد، نیار به از دست مقدار کمتری گرما برای تبدیل شدن به یخ دارد.
۳- اثر سطح داغ: وقتی آب گرم‌تر سرد می‌شود، جریان‌های همرفتی در آن به وجود می‌آید و توزیع گرما در آن به صورت یکنواخت نخواهد بود. چینن چیزی باعث می‌شود که یک لایه آب گرم در بالای لایه آب سرد در آن ایجاد شود. به این پدیده اثر سطح داغ می‌گویند. این دو لایه‌ای شدن آب گرم‌تر، باعث می‌شود که سرعت خنک شدن آن نسبت به آب در ابتدا سردتر، بیشتر شود.
۴- اثر بر محیط اطراف: محیط اطراف ظرف‌های حاوی آب گرم و آب سردتر، هم بر یخ زدن آب‌ها اثر می‌گذارد. مثلا اگر آب گرم و سرد، هر دو روی لایه‌ای از یخ در یخچال قرار داده شوند، آب گرم‌تر ممکن است، در ابتدا باعث ذوب شدن مقداری یخ شود و در یخ فرو رود و در نتیجه شرایط بهتری برای یخ زدن پیدا کند

در زیر به توضیح بیشتر این عوامل می پردازیم:
تبخیر :
وقتی آب داغ بتدریج سرد می شود بخشی از آب به شکل بخار خارج می شود و جرم آب کاهش می یابد . کاهش جرم آب سبب می شود آب باقی مانده با از دست دادن گرمای کمتری منجمد شود و فرآیند انجماد تسریع شود اگرچه فرآیند تبخیر و کاهش جرم آب یکی از عوامل مهم در ایجاد پدیده ممباست ولی تنها عامل نیست بطوریکه حتی با حذف تبخیر هم پدیده ممبا مشاهده میشود به عبارت بهتر اگر آب داغ را در یک طزف دربسته ریخته و مانع از تبخیر و کاهش جرم شویم باز هم آب داغ سریع تراز آب سرد منجمد میشود . پس علاوه بر تبخیر عوامل دیگری هم در این مورد تاثیر گذار هستند
خروج گازهای حل شده از آب
می دانیم که انحلال پذیری گازها با افزایش دما کاهش می یابد و نیز میدانیم که وجود ذراتحل شونده در یک حلال موجب کاهش دمای انجماد میشود . بنابراین می توان پذیرفت آب سرد حاوی میزان بیشتری از گازهای محلول بوده پس دمای انجماد پائین تری دارد و فرایند انجماد آن کند تر اتفاق میافتد . ولی این هم باز به تنهائی برای توجیه پدیده ممبا کفایت نمی کند زیرا اگر یک مقدار آب را به دقت جوشانیم تا گازهای محلول درآن کاملا خارج شود بعدآن را تا دمای 20درجه سرد کنیم و یک گاز جوشیده بدون گاز را در شرایط دمائی 70درجه نگهداریم باز هم آب 70درجه سانتی گراد زودتر منجمد میشود
تاثیر محیط
آب داغ ممکن است محیط اطراف خود را دچار چنان تغییراتی کتد که پس از آن انجماد سریع تر اتفاق بیفتد مثلا وقتی ظرف حاوی آب داغ را برروی برفک یخچال قرار میدهیم برفک یخچال ذوب میشود در این صورت آب گرم تماس بهتری با دستگاه سردکننده خواهد داشت ولی اگر چه این عامل هم میتواند تاثیرگذارباشد ولی به تنهائی نمی تواند پدیده ممبا را توجیه کند چون حتی وقتی هردو ظرف برروی یک سطح عایق قرار داده شوند بطوریکه ذوب برفک یخچال اتفاق نیفتدباز هم پدیده ممبا دیده میشود 
ابر سرد شدن :
ابر سرد شدن نیز به عنوان یکی از دلایل ایجادپدیده ممبا مطرح شده است . منظور از ابر سرد سدن این است که آب در دمائی پایین تراز صفر درجه منجمدشود.دردمای صفر درجه مولکولهای آ ب میخواهند به شکل بلور یخ ساختار منظمی بگیرند یعنی حرکات کاتوره ای خود را به عنوان یک مایع از دست می دهند ولی گاهی اوقات ذرات آبی که تاحد صفر درجه سرد شده اند هیچ بهم پیوستگی نمی بینند بنابراین آب تادمائی زیر صفر درجه بدون یخ زدن سرد میشودآزمایشات نشان می دهد آبی که درآغاز گرمتر بوده تنها تا 2 درجه ابر سرد می شود در حالی که آبی که از آغاز سردتر بوده تا 8 درجه ابر سرد می گردد بنابراین آب سرد دیرتر منجمد می شود .البته درستی فرایند ابر سرد شدن هنوز کاملا تائید نشده است ولی حتی در صورت تائید نمی تواند توجیه خوبی برای پدیده ممبا باشد چون به جای آنکه معما ، معمای دیگری قرار میدهد چرا باید آبیکه درایتدا گرمتر بوده بیشتر از آبی که درآغاز سردتربوده ابر سرد شود ؟البته یک پاسخ برای این سوال این است که چون آب سرد حل شوند گازی شکل بیشتری دارد دمای انجماد آن کمتر است . ولی چنانچه در بخش گازهای حل شده گفته شد حتی در صورت خروج کامل گازهای محلول باز هم پدیده ممبا اتفاق می افتد 
همرفت :
توجیه دیگری برای پدیده ممبا توجه به این واقیت است که دمای آب غیر یکنواخت میشود و همچنانکه آب سرد میشود گرادیان های دما و جریان های همرفت افزایشمی یابند . با افزایش دما چگالی آب کاهش می یابد بنابراین پس از گذشت زمان ، همچنانکه آب سرد می شود برروی سطح آب یک سطح داغ فوقانی ایجاد می شود یعنی دمای آب در سطح بشتر از دمای متوسط آب درکف ظرف خواهد بود . اگر آب دمای خود را اساسا از سطح از دست بدهد این به آن معنی است که آب گرمارا سریع تر از حالتی از دست می دهد که با در نظر گرفتن دمای متوسطش ازآن انتظار میرفت . به عبارت بهتر برای هر دمائی هرچه توزیع دمائی آب غیر یکنواخت تر باشد اتلاف گرما بیشتر است در واقع آبی که داغ تر است به سرعت دچار کاهش دما می شود و موجب ایجاد جریانهای همرفتی می گردد .برقراری این جریانهای همرفتی سبب میشود که دمای آب از بالا تاپائین بشدت دچار تغییر شود ولی آبی که دمای کمی دارد آهسته تر سرد می شود پس سرعت ایجاد جریان های همرفتی هم در آن کمتر است ودیرتر دچار کاهش دما می شوددر یک مثال واقعی میتوان فرض کرد آب گرم تر ، از دمای 70 درجه وآب سردتر از دمای 30 درجه آغاز کند . وقتی دمای متوسط آب 30درجه است همه جای آن به طور یکنواخت 30درجه دارد درحالیکه وقتی آب گرم به دمای متوسط 30درجه می رسد سطح آن دمایی بسیار بیشتر از 30درجه دارد بنابراین گرما را سریعتر از آبی ازدست می دهد که در همان دمای متوسط قرار داردبه نظر میرسد جریان های همرفتی میتواند به تنهائی پدیده ممبا را توجیه کند ولی این مشروط به آن است که بتوانیم یک مدل نظری برای جریانهای همرفتی داشته باشیم ولی چنین مدلی هنوز بدست نیامده است

محمدعلی هادیزاده بازدید : 184 پنجشنبه 05 تیر 1393 نظرات (0)

شما نیاز به یک بطری پلاستیکی دو لیتری دهان گشاد دارید.

۲- قسمت بیش تر بطری را با آب گرم پر کنید و سپس مقداری مایع ظرفشویی اضافه کنید.

۳- بقیه ی موادی که شما نیاز دارید سرکه و جوش شیرین و رنگ خوراکی است.(اگر شما حباب های رنگی می خواهید باید رنگ خوراکی را اضافه کنید.)

توجه: در صورت اضافه کردن رنگ خوراکی لباس ها و سطوح دیگر لکه می شوند، پس مواظب باشید.

۴٫به بطری تان دو قاشق سوپ خوری جوش شیرین اضافه کنید. دست تان روی قسمت باز بطری قرار دهید و آن را خوب تکان دهید تا آبتان حسابی کف آلود شود. حالا یک قطره رنگ خوراکی به کفتان اضافه کنید.

۵٫در این مرحله باید سرکه را اضافه کنید. حالا واکنش شروع می شود. توجه کنید که هرگز سرپوش بطری را رویش قرار ندهید چون خطرناک است و باعث انفجار می شود.

اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آرشیو
    نظرسنجی
    تا چه حد مطالب این سایت مورد استفاده شما قرار گرفته است؟
    کدام را بیشتر نیاز دارید؟
    پیوندهای روزانه
    آمار سایت
  • کل مطالب : 197
  • کل نظرات : 93
  • افراد آنلاین : 7
  • تعداد اعضا : 19
  • آی پی امروز : 57
  • آی پی دیروز : 11
  • بازدید امروز : 165
  • باردید دیروز : 13
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 178
  • بازدید ماه : 221
  • بازدید سال : 2,142
  • بازدید کلی : 155,345
  • کدهای اختصاصی

    ابزار هدایت به بالای صفحه